

"Wind Gust Climatology for Southern South Carolina and Coastal North Georgia"

Ryan Kramer Penn State University Meteorology NOAA Goal: Weather-Ready Nation NWS Charleston, SC Frank Alsheimer

About Me

- Ryan Kramer
- Penn State University, Meteorology

- Chose Charleston, SC NWS because:
 - Experience operational meteorology
 - Different style of research

Outline

- Goals
- Background
- Methods
- Results
- Conclusions
- Next Steps

Develop guidelines an NWS Charleston, SC forecaster can use to forecast wind gusts.
 – No clear blueprint currently in place

 Base these guidelines on trends of various time scales found in an analysis of surface observations

Wind Gust: Rapid fluctuation in wind speed

 — 10 knot variation between wind peaks and lulls
 Gusts are only reported if ≥ 14 knots

Land Sites

- Sustained Wind: 2 minute average
- Gusts: 5 second average
- Marine Sites (buoys)
 - Sustained Wind: 8 minute average
 - Gusts: 5 second average

• Gust Factor (G)

$G = U_{max}/\bar{U}$ Gust over sustained wind speed

• Ex: "1.25 or 125%"

- Should always be ≥ 1

• G multiplied by Sustained Wind = Gust

- NWS Charleston wind gust forecasting:
 - Forecasters estimate G from experience
 - Forecasting Smart Tool's default value of 1.15 is applied
- Project purpose: Analyze climatological data to determine appropriate gust factor values for forecasting

4/11/2013

- Hourly, or more, time-stamped surface observations at each location
 - Gust, sustained wind, wind direction, etc.
 - Data from Jan 1, 2007 to Dec 31, 2011

- Quality Control
 - Remove erroneous wind reports
 - Keep only data within 1 standard deviation of mean G
 - Ensure dataset representative of "fair-weather" conditions

- Geographical Groupings
 - All-Land vs. Marine
 - Land vs. Marine/Shoreline

Data set with 3,000 observations per location
 – Noticed a bias towards locations with many points

- Gusts found in 17% of all land observations and 50% of all marine observations
- Sustained winds:

All Land Sites		Marine Sites		
Sustained Wind	% of Obs.	Sustained Wind	% of Obs.	
< 10 knots	82.5%	< 10 knots	35.3%	
10 – 20 knots	16.3%	10 – 20 knots	53%	
20 – 30 knots	1.2%	20 – 30 knots	11.3%	
30 – 40 knots	.02%	30 – 40 knots	.45%	
40+ knots	.001%	40+ knots	.02%	

•How often are gusts reported when the sustained wind is X knots?

•How often do observations at hour X include a gust report?

Wind Summary

Seasonal Averages

•Changes in gust frequency magnitude, and daily "peak gust time" shifts with season

- Gust factors and sustained wind speed trends are inversely related over land
 - New grouping: Land vs. Marine/Shoreline

Land	<u> </u>	Marine/Sho	reline
Sustained	G	Sustained	G
0 knots	1.94	<10 knots	1.65
5 knots	1.57	10-15 knots	1.22
nots	1.43	15-20 knots	1.21
ots	1.38	20-25 knots	1.22
	1.37*	25+ knots	1.23

* Statistically insignificant number of points

Hourly Averages

• Slight diurnal variation

- Forecasters may want a general gust factor value they can confidently input into long-term forecasts
- Consider that the majority of observed gusts over land occur:
 - with sustained winds of 11 to 16 knots
 - from 15z to 22z

Land ≈ 1.51

Marine/Shoreline ≈ 1.21

Wind Direction

Wind Direction

Ft. Pulaski

Direction	G	Sustained Wind
0-90°	1.25	15.2
90-180°	1.47	11.4
180-270°	1.45	12.1
270-360°	1.24	15.7

•More local variation

•Gust factor variation explained by sustained wind speed variation

google.maps.com

- Slight gust factor variation monthly and seasonally
 - Land and Marine/Shoreline appear inversed

Gusts vs. Sustained Wind Speeds

Conclusions

- Relationship between surface sustained wind and gusts is very strong
 - Accurate sustained wind forecast can lead to a strong gust forecast
- Over land: Gust factor decreases with increasing sustained wind speed
 - Multiple factors can cause variability in gust factor
- Most gust trends, and land vs. marine differences, explained by:
 - Surface Roughness, atmospheric turbulence
 - Boundary Layer Mixing

- Analyze model soundings to better compare surface winds to upper air winds

 Atmospheric stability may also play a role in gusts
- Closer look at effects of surface roughness

 Variation with location
- Update Smart Tool within the NWS Integrated Forecast Preparation System
 - Automatically apply trends to forecast grids

- Frank Alsheimer
- Jonathan Lamb and Blair Holloway
- The rest of the NWS Charleston office
- Hollings Program Coordinators

- Cook, R., Gruenbacher, B., 2008. Assessment of Methodologies to Forecast Wind Gust Speed. NWS Wichita. http://www.crh.noaa.gov/ict/?n=windgust
- Davis, F.K., Newstein H., 1968. The Variation of Gust Factors with Mean Wind Speed and with Height. J. Appl. Meteor., 7, 372–378.
- Vickery, P., Skerlj, P., 2005. Hurricane Gust Factors Revisited. *Journal of Structural Engineering*. Vol. 131, No. 5, pp. 825-832
- ASOS Users' Guide, 1998.
- Wieringa, J., 1972. Gust Factors Over Open Water and Built-Up Country. *Boundary-Layer Meteorology*. Volume 3, Issue 4, pp.424-441
- Durst, C.S., 1960. Winds Speeds Over Short Periods of Time. *The Meteorological Magazine.* Volume 89, No. 1,056.
- Krayer, W., Marshall, R., 1992. Gust Factors Applied to Hurricane Winds. Bulletin American Meteorological Society, Volume 73, No. 5
- National Data Buoy Center., 2012.

- Gathered 12z sounding data for Charleston Air Force Base/Intl. Airport (CHS)
 - CHS is one of the surface data sites

 Saved CHS data for days with both upper air and surface data

 Compared winds at 850mb, 925mb, and 1000mb to surface winds

Max. S	fc Wind	<u>Ave. Sf</u>	<u>c Wind</u>	<u>12z Sfc</u>	Wind
	R ²		R ²		R ²
1000mb	.12	1000mb	.05	1000mb	.78
925mb	.76	925mb	.76	925mb	.89
850mb	.68	850mb	.62	850mb	.68

- Strongest relationship at 925mb
 - Inversion at 1000mb, 850mb too high
- Are 925mb winds a reliable indicator of surface conditions around the same time of sounding?
- No stand out trends for Gusts or Gust Factors

 Add a number to the sustained wind forecast to get gust forecast value

Land		
Sustained Wind	Add On	
<10 knots	8.2	
10-15 knots	7.3	
15-20 knots	8	
20-25 knots	9	
25-30 knots	10.8	
30+ knots	12.8	

Sustained Wind	Add on
<10 knots	5.4
10-15 knots	3
15-20 knots	3.4
20-25 knots	4.6
25-30 knots	5.9
30+ knots	7.3