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1. INTRODUCTION 
 
The National Weather Service Forecast Office (WFO) in Wilmington, Ohio, has forecast and 
warning responsibilities for 52 counties across southwest Ohio, north-central Kentucky, and 
southeast Indiana (Fig. 1).  Severe convective storms can occur at any time of the year in this area, 
although they are most frequent during the spring and summer.   
 
The motivation for producing a severe weather climatology for the Wilmington, Ohio, county 
warning area (CWA) is to provide forecasters with a historical baseline of the likelihood and type of 
severe weather on annual, seasonal, monthly and hourly scales.  A severe weather climatology can 
supply forecasters with an extensive background in assessing the frequency and magnitude of 
different types of severe weather on temporal and spatial scales, and assist in anticipation of local 
severe weather.  The period of the study extends from the early 1950s to 2004.   

Section 2 will explain the methodology employed in producing the data for this study.  Section 3 will 
introduce the demographics and topography of the Wilmington CWA.  Section 4 will present an 
analysis of the tornado, severe convective wind and hail events across the Wilmington CWA over 
the period of study, and provide a climatological basis for observed trends in severe weather across 
the Wilmington CWA.  Section 5 will offer a summary of the findings.  It is hoped that this study 
may contribute to additional climate-related research on severe convective storms affecting the 
Wilmington CWA.   
 
 
2. DATA AND METHODOLOGY 
 
Data used in this research were collected using the National Weather Service’s Storm Prediction 
Center (SPC) Svrplot v2.0 program (Hart 2004), which lists all severe convective wind and severe 
hail events from 1955 to 2004, as well as all tornado events from 1950 to 2004.  All severe weather 
events can be categorized by event type, intensity, occurrence time, and with tornadoes, according to 
F-scale, path length and width.  Event times are referenced to Eastern Standard Time (EST). 
 
The Fujita Scale is used to classify tornadoes into five categories based on the amount of damage 
that is produced (Fujita 1981).  Estimated wind speeds are then provided for each category, with F0 
being the weakest and F5 the strongest (Table 1).  The total number of tornadoes included in this 
database is less than the number of tornado segments identified in this study.  Many tornadoes track 
through more than one county.  To accurately account for the number of tornado occurrences in a 
given county, these multi-county tornadoes are broken up into tornado segments.  For example, a 
tornado that tracks uninterrupted through three counties would be identified as three separate events 
(three segments).  Beginning in 1994, tornado occurrences were recorded according to this method.  
Thus, according to McCarthy and Schaefer (2004), this change in procedure has led to an increase in 
the number of tornado segments recorded since 1994.   
 
A severe convective wind event, according to the National Weather Service, is defined by winds of 
50 kts (58 mph) or greater, or winds causing damage to structures.  Likewise, a severe hail event, 
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also defined by the National Weather Service, requires hail size to reach a minimum diameter of 
0.75 inches.  
 
 
3. COUNTY WARNING AREA DEMOGRAPHICS AND TOPOGRAPHY 
 
3.1 Demographics 
 
The Wilmington, Ohio, CWA covers over 20,000 square miles (Fig. 2),  with a total population for 
the area estimated at nearly 5.5 million people as of 2000 (Fig. 3).  There are two major metropolitan 
areas that account for nearly 80% of the total population.  The largest population center is the Tri-
State metropolis across southwest Ohio, northern Kentucky and southeast Indiana, with a population 
base of around 3 million people.  The Tri-State metropolis consists of the cities of Cincinnati, 
Hamilton, and Covington and extends northward to encompass Dayton, Xenia, and Springfield.  The 
greater Columbus metropolitan area, which includes the cities of Newark, Lancaster, and Delaware, 
has a population base of nearly 1.5 million people (U.S. Census Bureau 2000).   
 
The remainder of the forecast area is largely rural and sparsely populated.  This contributes to an 
average population density across the CWA of 256 people per square mile (Fig. 4), lower than the 
population densities in the metropolitan areas.  Some skewing of observed severe weather towards 
the higher population centers is likely given the uneven population distribution of people across the 
CWA. 
 
 
3.2 Topography 
 
The topography of the Wilmington, Ohio CWA varies, ranging from plains across west-central Ohio 
and eastern Indiana to gently rolling to hilly terrain over southern Ohio and northern Kentucky.  The 
Till Plains of western Ohio mark the eastern extent of the Midwestern Corn Belt, and are found 
across the northwest portion of the CWA.  Terrain becomes gently rolling and dotted by hills further 
to the south, as the Great Miami, Little Miami and Scioto rivers carve valleys oriented north-south 
through the CWA.  More rugged terrain is found across southern Ohio and northern Kentucky, in 
closer proximity to the Ohio River and on the western fringes of the Appalachian plateau.  
Elevations throughout the CWA range from 500 to 1000 feet above ground level (AGL), as shown in 
Fig. 5. 

 
 
4. SEVERE WEATHER CLIMATOLOGY 
 
A total number of 6,131 severe weather events occurred across the Wilmington, Ohio, CWA during 
the period 1950-2004.  Of this total, 4,175 severe convective wind events were reported, or nearly 
68% of the total number of events (Fig. 6).  A total of 1,470 severe hail events (Fig. 7) and 405 
tornadoes (Fig. 8) were reported.  As a whole, observed events tended to be more concentrated in the 
metropolitan areas surrounding Cincinnati, Columbus and Dayton.  Fewer events, however, were 
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reported across more rural areas of the Wilmington CWA, in particular across southeast Indiana and 
portions of northern Kentucky and south-central Ohio. 
 
4.1 Tornado Climatology 
 
Between 1950 and 2004, 405 tornadoes, or 486 tornado segments (see Section 2) occurred across the 
Wilmington, Ohio, CWA.  An annual distribution of tornadoes (Fig. 9) shows that despite a gradual 
increase in the number of reported tornadoes since the 1950s and 1960s, the number of tornadoes 
remains highly variable from year to year. This is due at least in part to the yearly variability of 
weather patterns that affect the Ohio Valley.  The Palm Sunday outbreak in April 1965 and the 
Superoutbreak in April 1974 were two of the most significant tornado outbreaks to occur in recorded 
history across the Midwest and Ohio Valley.  These tornado outbreaks were noteworthy in terms of 
the number of violent tornadoes (F4-F5) within each outbreak.  1992 was the most active year for 
tornadoes with 24.  The number of tornadoes producing F2 damage and greater has largely remained 
unchanged since 1950.  There has, however, been a noted increase in the yearly proportion of the 
total number of tornadoes to the number of significant tornadoes.  This has likely been influenced by 
an overall increase in public severe weather awareness and the development and expansion of the 
trained spotter and amateur radio networks (McCarthy and Schaefer 2004).  
 
Tornadoes were most commonly reported across the Wilmington, Ohio CWA between April and 
July (Fig. 10), making up approximately 73% of all tornadoes in this study.  Many of the tornadoes 
that occurred during this same period (April-July) demonstrated the tendency to produce F2 damage 
or greater (Fig. 11).  A minor secondary peak is noted in November, with half of these being F2 and 
greater.  Tornadoes most frequently occurred between the mid-afternoon and evening hours (Fig. 
12).  Just over 50% of all tornadoes occurred between 3-7 PM EST, with the least amount of activity 
occurring between midnight and 10 AM EST. 
 
While 80% of all tornado-related fatalities across the Wilmington CWA occurred during the late 
afternoon and evening hours, only 5% of the total number of fatalities took place between midnight 
and 1 PM (Fig. 13).  Likewise, nearly 75% of all tornado-related injuries occurred during the late 
afternoon and evening, with 45% of these injuries occurring between 3-4 PM (Fig. 14).  The  
anomalous spike during this time is clearly biased by the 3 April 1974 Xenia, Ohio, tornado, which 
accounted for 1,150 injuries alone.   
 
Approximately 70% of all tornadoes examined across the Wilmington CWA between 1950 and 2004 
were classified as “weak” tornadoes (F0-F1) with winds of 60-115 mph (Fig. 15).  While close to 
half of all tornadoes were classified as F1, nearly 30% were categorized as significant tornadoes (F2-
F5).  The percentage of tornadoes then decreases by nearly a factor of three for each successive 
category.  Violent tornadoes (F4-F5), while having made up only 4% of all tornadoes, accounted for 
approximately 82% of all tornado-related fatalities (Fig. 16) and 76% of all tornado-related injuries 
(Fig. 17).  The 1974 Xenia, Ohio tornado, however, contributed significantly to the higher 
percentage of fatalities and injuries in the violent tornadoes category.  This tornado, which was a part 
of the Superoutbreak, overwhelmingly produced the highest number of fatalities (36) and injuries 
(1150) of any tornado during the 1950-2004 period. 
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The tracks of all tornadoes producing F2 damage and greater across the Wilmington CWA can be 
seen in Fig. 18.  The map hints at a favored track pattern that extends from southern Indiana 
northeast through the Cincinnati area, then on into the Columbus area.  A weaker signal can be seen 
across the far northern portion of the CWA, where tornadoes appear to track in a more west to east 
direction.  This supports the findings of Broyles and Crosbie (2004), who provided evidence 
indicating that both of these favored tracks are actually portions of two smaller tornado alleys for 
long track tornadoes that produced F3 damage and greater over a 124-year period.  They identified 
an area of increased long- track significant tornadoes extending from southern Missouri northeast 
into southwest Ohio, with a second area extending from central Illinois east-northeast into northwest 
Ohio. 
 
To better assess path lengths and widths, tornadoes were grouped into three F-scale related 
categories (F0-F1, F2-F3, and F4-F5) and average path lengths and widths were calculated for each 
group.  Figure 19 indicates that the path length increases by nearly a factor of four for each category, 
with violent tornadoes rated as F4 and F5 averaging just over 32 miles in length.  Figure 20 shows a 
similar increase, but for path width, expanding by nearly a factor of three for each successive 
category. 
  
 
4.2 Convective Wind Climatology 
 
The annual distribution of severe convective wind events shows a dramatic increase in observed 
events over the period of study (Fig. 21).  This corresponds to the national trend which has shown 
more than a 400% increase in the number of annual severe convective wind reports between 
1970-2000 (Weiss et al. 1999).  As with tornado reports, the development of the trained spotter and 
amateur radio networks have certainly contributed to this.  Note that wind data are missing from 
1972.  This coincides with a change in procedure in the collection of wind data in the NOAA 
publication Storm Data.  Prior to 1972, convective wind and hail data were collected by the U.S. Air 
Force (Schaefer and Edwards 1999).  An increase in reports occurred in the 1980s, corresponding to 
the implementation of a national warning verification program within the National Weather Service.   
 
 
An additional rise in annual reports in the early 1990s coincides with the deployment of the WSR-
88D NEXRAD Radar network (Weiss et al. 1999). 
 
Severe convective wind events have occurred in each month of the year across the Wilmington 
CWA.  The number of events per month increase through the spring, and peak during June and July 
(Fig. 22).  This peak in convective wind events corresponds with the annual peak in severe weather 
events during the early summer.  The frequency of convective wind reports decrease during the late 
summer, with a secondary maximum observed in events noted in November.  Damaging wind events 
are most frequent during the late afternoon and evening hours, with 67% of the total number of 
events occurring between 2-9 PM, and 52% between 3-7 PM (Fig. 23).  This coincides with the time 
period when surface heating and atmospheric instability values are normally greatest.  The frequency 
of severe convective wind events decreased during the late evening and overnight hours, with the 
minimum occurring between 4-10 AM. 
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4.3 Hail Climatology 
 
The annual distribution of severe hail events shows a noted increase beginning in the early 1990s 
(Fig. 24). This distribution is similar to that previously noted for the severe convective wind events 
between 1955 and 2004 (Fig. 21), and corresponds to the overall increase in reports nationally since 
1955.  This too is likely influenced heavily by the increase in trained spotter and amateur radio 
networks (Schaefer et al. 2004).  Fluctuations in synoptic patterns, particularly those supporting 
severe convection, will have an obvious influence on the total number of severe weather reports.  
This may be part of the reason behind both the 1997 and 1999 datasets indicating a significantly 
lower number of severe hail events when compared to the average annual number of hail events 
during the period 1994-2004. 
 
For the period 1955-2004, severe hail was recorded in every month but December (Fig. 25).  The 
frequency of severe hail events is greatest from April through June.  As with the monthly tornado 
and severe convective wind distributions, a small secondary maximum is noted in November.  
Severe hail events are most frequent during the afternoon and early evening hours, with 65% of the 
total number of events occurring between 2-8 PM (Fig. 26).  A minimum number of severe hail 
events occurred during the overnight and early morning hours, with only about 7% of the total 
number of events taking place between the hours of 1-11 AM. 
 
Hail of 1.00 inch in diameter or smaller accounted for nearly 73% of the total number of severe hail 
events, with penny-size hail (0.75 inches in diameter) being the most widely reported hail size.  Two 
and one-half (2.5) inch diameter hail and larger were rare in the CWA, making up only about 3% of 
the total number of severe hail reports (Fig. 27). 
 
 
5. SUMMARY 

 
Over 6,000 severe weather events consisting of tornadoes, severe convective wind and hail were 
compiled during the period 1950-2004 using the Svrplot v2.0 program from the National Weather  
Service’s Storm Prediction Center.  Events were categorized by severe weather type on annual, 
monthly and hourly time scales.  
 
 
Tornadoes were found to be most frequent during the spring and early summer, primarily between 
April and July.  Significant tornadoes rated as F2 and greater (see Table 1) peaked in April, and were 
strongly influenced by the large tornado outbreaks that occurred on 11 April 1965 and 3 April 1974.  
Severe convective wind events were most frequent between April and August, while severe hail 
events were most common between April and July.  All three severe weather types showed a weaker 
secondary maximum in November.  Additional research is needed to help understand this minor 
secondary peak. 
 
The annual number of severe weather reports has increased dramatically since 1990, with nearly 
70% of all of the reports included in this study occurring from that point.  Several reasons can be 
attributed to this increase.   
 



 

These include: 
1) The development of the trained spotter and amateur radio networks beginning in the 1990s; 
2) An increase in public severe weather awareness via the NWS, media and other sources; 
3) Increases in population throughout the CWA;  
4) Improved detection capabilities as a result of the advent and deployment of the WSR-88D 
Doppler radar network throughout the NWS in the early 1990s. 
 
The information presented in this study identifies historical trends in location and types of severe 
weather at the Weather Forecast Office (WFO) in Wilmington, Ohio.  The data presented within this 
climatology will provide forecasters with a background for evaluating the frequency and impact of 
different types of severe weather on temporal and spatial scales, and act as an additional resource for 
forecasters in anticipation of severe weather within the CWA.  Also, it is envisioned that the results 
documented in this study will spawn subsequent locally focused severe convection climatologies that 
impact the Wilmington CWA. 
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Table 1. The Fujita Damage Scale (Fujita, 1981) 
 

Scale  Wind Speed (mph)  Tornado Character  Damage Intensity 
 
F0  40-72    Weak    Light 
F1  73-112    Weak    Moderate 
F2  113-157   Strong    Considerable 
F3  158-206   Strong    Severe 
F4  207-260   Violent   Devastating 
F5  261-318   Violent   Incredible 
 
 



 

FIGURES 

 
 

Figure 1.  The 52 counties that comprise the Wilmington Ohio County Warning Area (CWA), 
including southwest Ohio, north-central Kentucky and southeast Indiana.  The blue line indicates the 
state borders. 
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Figure 2.  The total area in square miles by county across the Wilmington, Ohio CWA. 
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Figure 3.  The population by county across the Wilmington, Ohio CWA based on the 2000 U.S. 
Census Bureau numbers. 
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Figure 4.  The county population density across the Wilmington, Ohio CWA based on the 2000 U.S. 
Census Bureau numbers. 

10 



 

 
 

Figure 5.  A high-resolution topographic map of the Wilmington, Ohio CWA, taken from the 
Advanced Weather Information Processing System (AWIPS).  Heights range from 500 feet (lighter 
yellow-orange) to 1500 feet AGL (purple). 

 

 
Figure 6.  The total number of severe convective wind events across the Wilmington, Ohio, CWA 
from 1955-2004. 
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Figure 7.  The total number of severe hail events across the Wilmington, Ohio CWA from 1950-
2004. 
 

 
Figure 8.  The total number of tornadoes across the Wilmington, Ohio CWA from 1950-2004. 
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Figure 9.  The annual distribution of tornadoes across the Wilmington, Ohio CWA, from 1950-
2004. 
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Figure 10.  The monthly distribution of tornadoes across the Wilmington, Ohio CWA from 1950-
2004. 
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Figure 11.  The monthly distribution of significant tornadoes (F2-F5) across the Wilmington, Ohio, 
CWA from 1950-2004. 
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Figure 12.  The hourly distribution of tornadoes across the Wilmington, Ohio CWA from 1950-
2004.  Hours are in Eastern Standard Time. 
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Figure 13.  Tornado-related fatalities by hour across the Wilmington, Ohio CWA from 1950-2004.  
Hours are in Eastern Standard Time. 
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Figure 14.  Tornado-related injuries by hour across the Wilmington, Ohio CWA from 1950-2004.  
Hours are in Eastern Standard Time. 
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Figure 15.  Percentage of tornadoes by F-Scale across the Wilmington, Ohio CWA from 1950-2004. 
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Figure 16.  The number of tornado fatalities by F-scale across the Wilmington, Ohio CWA from 
1950 to 2004. 
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Figure 17.  The number of tornado injuries by F-scale across the Wilmington, Ohio CWA from 
1950 to 2004. 

 
 

 
Figure 18.  The significant tornado (F2-F5) tracks across the Wilmington, Ohio CWA from 1950-
2004. 
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Figure 19.  The average tornado path length (in miles) for weak (F0-F1), strong (F2-F3) and violent 
(F4-F5) tornadoes across the Wilmington, Ohio CWA from 1950-2004. 
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Figure 20.  The average tornado width (in yards) for weak (F0-F1), strong (F2-F3) and violent (F4-
F5) tornadoes across the Wilmington, Ohio CWA from 1950-2004. 
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Figure 21.  The annual distribution of severe convective wind events across the Wilmington, Ohio, 
CWA from 1955-2004.  Wind data from 1972 are missing. 
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Figure 22.  The monthly distribution of severe convective wind events across the Wilmington, Ohio 
CWA from 1955-2004. 
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Figure 23.  The hourly distribution of severe convective wind events across the Wilmington, Ohio, 
CWA from 1955-2004.  Hours are in Eastern Standard Time. 
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Figure 24.  The annual distribution of severe hail events across the Wilmington, Ohio CWA from 
1955-2004. 
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Figure 25.  The monthly distribution of severe hail events across the Wilmington, Ohio CWA from 
1955-2004. 
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Figure 26.  The hourly distribution of severe hail events across the Wilmington, Ohio CWA.  
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Figure 27.  The distribution of severe hail by size across the Wilmington, Ohio CWA. 
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The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce 
on October 3, 1970.  The mission responsibilities of NOAA are to assess the socioeconomic impact of natural 
and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans 
and their living resources, the atmosphere, and the space environment of the Earth. 
 
The major components of NOAA regularly produce various types of scientific and technical information in the 
following kinds of publications: 
 
PROFESSIONAL PAPERS--Important definitive 
research results, major techniques, and special 
investigations. 
CONTRACT AND GRANT REPORTS--Reports 
prepared by contractors or grantees under NOAA 
sponsorship. 
 
ATLAS--Presentation of analyzed data generally in 
the form of maps showing distribution of rainfall, 
chemical and physical conditions of oceans and 
atmosphere, distribution of fishes and marine 
mammals, ionospheric conditions, etc. 
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papers, planning reports, and information serials; and 
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extensive details, mathematical developments, or 
data listings. 
 
TECHNICAL MEMORANDUMS--Reports of 
preliminary, partial, or negative research or 
technology results, interim instructions, and the like. 
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