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1. Introduction 

The National Weather Service (NWS) provides severe weather warnings “for the protection of life
and property”. NWS field offices are tasked with issuing severe weather warnings for their areas
of responsibility or County Warning Area (CWA). The Weather Forecast Office (WFO) located at
Wakefield VA has forecast and warning responsibility for 66 political jurisdictions, which include
51 counties, and 15 independent cities. WFO Wakefield’s CWA encompasses the lower Maryland
Eastern Shore, central and eastern Virginia, and northeast North Carolina (Fig.1). 

The purpose of this climatological study is to provide a baseline of knowledge of the likelihood of
severe weather types for forecasters in the WFO Wakefield CWA. A local severe weather 
climatology serves as an excellent source for training, especially with regard to frequency of
seasonal and diurnal severe weather event maxima and minima. Using a baseline climatology of
severe weather, forecasters can become familiar with which types of severe weather occur with 
greater (or lesser) frequency, at certain times of the day, or certain seasons of the year. This base
knowledge of local climatology will aid forecaster’s ability to recognize severe storms. 

2. Data and Methodology 

2.1 Data Sources 

The NOAA’s NWS Storm Prediction Center (SPC) in Norman, OK and the NOAA’s National
Climatic Data Center (NCDC) in Asheville, NC provide online access to documented severe weather 
events across the United States. For the purposes of this study, tornado intensity and track data from
1950 through 1995 were compiled using the archive available from the SPC website. Hail and wind 
data were provided by Local Storm Data publications from 1996 through 2000. The wind data is 
separated into convective and non-convective wind gust events. All times are referenced to Eastern 
Standard Time. 

WFO Wakefield’s CWA experiences a wide variety of weather phenomena, including severe 
thunderstorms that produce tornados, large hail, and damaging wind gusts. By NWS definition, a
severe local storm is one that is sufficiently intense to threaten life and/or property, including
thunderstorms with large hail, damaging wind, or tornados (National Weather Service 1995). Severe
thunderstorms are further defined as producing tornados, hail ¾ inch or greater in diameter, and/or
wind gusts 50 knots (58 mph) or greater (National Weather Service 1995). 

The paper examines all severe weather storm types (tornados, ¾ inch hail or greater, and convective
wind gusts 50 kts or greater) affecting the Wakefield CWA to develop a local severe weather
climatology. 

2.2 County Warning Area Topography and Demographics 

Topography 

The topography of WFO Wakefield’s CWA is characterized by a gentle rise in elevation from sea 
level along the Atlantic coast, Chesapeake Bay and the northeast North Carolina Sounds to the 
rolling hills in the Piedmont areas of central Virginia and interior northeast North Carolina. A
notable increase in elevation occurs west of the “fall line” which runs roughly along Interstate Route
I-95. The highest elevations reach 500 to 600 feet in the extreme western part of the CWA located 
over the east central Virginia Piedmont. 

Topography is a contributing factor in the initiation of convective storms. During hot weather, 
compression of air east of the Blue Ridge Mountains forms a leeside trough of low pressure, which
can help initiate and enhance convective development. In addition, sea breeze boundaries that form
when there is significant temperature differences between the air-water interface can help initiate
and maintain convection. Sea breeze boundaries are especially prevalent over the central and 
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southern Delmarva Peninsula, western shores of the Chesapeake Bay, the Hampton Roads areas of 
southeastern Virginia; and along the northern shore of the Albemarle Sound in northeast North 
Carolina. 

Demographics 

The population of the WFO Wakefield’s CWA is roughly 3 million people. The largest population
center includes the Hampton Roads area in extreme southeast Virginia, which has a population base
of roughly 1.5 million people. Hampton Roads includes the cities of Norfolk, Portsmouth, Virginia
Beach, Chesapeake, Suffolk, Hampton, Newport News and Williamsburg. The Greater Richmond,
VA metropolitan area, which includes the Tri-Cities (Hopewell, Petersburg, and Colonial Heights),
has the only other large population base, roughly 1.1 million people. Although the CWA contains 
these large population centers, the CWA has a low population density. Outside of these population
centers, the CWA is mainly rural farmland or heavily forested, and contains sparse population. This
uneven distribution of people across the CWA can lead to skewing of observed phenomena toward 
the more heavily populated locations. 

3. Severe Weather Climatology 

3.1 Tornado Climatology 

Monthly Distribution 

The monthly distribution of tornados (Fig. 2) shows the Wakefield CWA can experience tornados
at any time of the year. However, tornados are most likely to occur during the spring and summer 
months with the peak frequency in May. A total of 230 tornados occurred in the Wakefield CWA,
of which, 43 tornados (19% of the total) were in May. The data suggests a secondary peak 
occurrence in August, however the data is likely biased by the large tornado outbreak of Aug 6,
1993. This event produced a total of 18 tornados, including the infamous “Petersburg Tornado”.
There is a pronounced, but lesser tornado occurrence peak in the fall. Fall tornados often are
associated with land-falling tropical systems. Also, the November data is likely biased by a major
tornado outbreak on Nov 11, 1995, which was actually non-tropical in nature. 

Hourly Distribution 

Diurnal trends indicate an increase in tornados after the noon hour (Fig. 3). Tornado activity peaks
in the late afternoon between 4 and 6 PM. Sixty-nine tornados (30% of the total) occurred during
the 4 PM to 6 PM time frame. The data shows a gradual decrease in the occurrence of tornados
during the evening hours, and that tornados occur infrequently during the late night through early-to-
mid morning hours. Atmospheric instability is a key ingredient in the generation of tornadic storms 
and is usually maximized during the mid- to late-afternoon hours. 

Intensity (Fujita Scale) 

Tornado intensity can be rated using the Fujita Scale (Table 1), which is based on the extent of the 
associated wind damage. Of the 230 tornados that were reported to have occurred in Wakefield’s 
CWA, nearly three-quarters (167 or 73% of the total) were classified as weak F0 or F1 tornados 
(Fig. 4). Sixty-one tornados (or 27%) were rated strong (F2 or F3) and only 2 (<1%) were rated as
violent F4 tornados. (The Petersburg Tornado was one of those rated F4). There were no
documented F5 tornados. 

Intensity Variations 

Tornados that occur in the Wakefield CWA are most often weak (F0-F1), and only infrequently
classified as strong (at least F2), and even rarer still, as violent. However, it is evident from 
historical tornado track data (Fig. 5) that stronger (usually F2 or greater), long track (usually
covering 50 miles or greater) tornados are more likely to occur over the inland locations versus the 
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coastal region. Usually, these longer-track tornados are developed on and are maintained by low-
level wind shear and instability generated along strong temperature and moisture boundaries. These 
atmospheric discontinuities decrease in the more stable environment nearer the coast. Long-track
tornados are generally stronger, and thus likely to cause more damage than the weaker short-track
tornados. 

When historical tornado data is further broken down by intensity, a subtle trend in diurnal 
occurrence is noted (Fig. 6). The occurrence of all tornados peaks during the late afternoon hours 
(between 4 and 6 PM); however, weaker F0/F1 tornados are more numerous than stronger tornados
(F2 and above) during the early afternoon. 

3.2 Hail Climatology 

Monthly Distribution 

The monthly distribution of severe hail (3/4 inch diameter or greater) indicates a strong inclination
toward the spring season (Fig. 7). Occurrences of severe hail peak in May, with 100 severe hail
events of the total 370 (or 27%) recorded during the month. Secondary severe hail event maxima 
are apparent in April and June, and the three month total (April through June) accounted for 65%
(241 of 370 events) of all occurrences. Severe hail occurrences show a steady decline during the 
summer months, and a well-defined minima is noted in the fall and early winter. 

Hourly Distribution 

Severe hail typically occurs during the early to mid afternoon time frame (Fig. 8). Two hundred
twenty-one severe hail events of the 370 total occurrences (60%) were during the hours of 2 PM to
6 PM. A steady decline of severe hail occurrences was indicated during the late afternoon and
evening hours. Severe hail is rare during the morning. 

The peak occurrence of hail frequency in spring during early-to-mid afternoons can be attributed to 
several factors. The first is the natural evolution of thunderstorms in which updrafts of the storm are 
strongest during the formative or initial stage. Strong updrafts are more favorable for hail formation. 
Another essential factor for hail formation and development is low zero wet-bulb temperature 
height. Zero wet-bulb temperatures heights are typically lower during the spring months due to the 
cooler atmospheric conditions common during the season. 

Seasonal Variations 

When the historical severe hail reports are broken down by season (Fig 9.), it becomes apparent that
a peak occurs during the spring months of March, April, and May. A secondary maximum is 
indicated during the summer months (June through August). Severe hailstorms are infrequent during
the fall and winter months. 

Magnitude (Hail Size) 

The majority of severe hail reported (188 events or 51% of the total) in the Wakefield CWA was less 
than one-inch diameter (Fig. 10). Occurrences of hailstones ranging from one to two inches 
accounted for almost half of the reports. Severe hail of over 2 inch diameter accounted for only a 
small percentage (<1%). The largest hailstone measured in the Wakefield CWA during the period
was 3-inch diameter. 

3.3 Damaging Wind Climatology 

Monthly Distribution 

Damaging wind events from convective storms show a steady increase during the spring and peak 
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in June (Fig. 11). One hundred sixty-three events (23% of the total) occurred in June. During the late
spring and early summer months of May, June and July, 417 events (59%) occurred. A secondary
damaging wind maxima was indicated in January, but the data is biased due to a climatologically 
anomalous large event that occurred on Jan 19, 1996. This event produced 40 separate reports of
convective wind damage. Convective wind damage was infrequent during October through
December. 

Hourly Distribution 

Damaging winds peak in the late afternoon between 4 PM and 6 PM (Fig 12). Two hundred twenty-
four events (32% of the total occurrences) were during this time frame. There is a steady increase
of wind damage during the early to mid afternoon, then steady decline during the evening hours.
Damaging winds due to convection were infrequent through the morning hours, especially around
sunrise. 

The natural evolution of thunderstorms is such that downdrafts become more prevalent in the
decaying or mature stage of the storm, and thunderstorms are most likely to be in these latter stages
of development during the mid to late afternoon. Strong downdrafts during the late stage of
thunderstorm development are a major contributor to downburst winds. 

Seasonal Variations 

When damaging wind data is broken down by season (Fig. 13), it is apparent that damaging wind
gusts are most likely to occur during the summer months (June through August). A secondary 
maximum is indicated during the spring months (March through May). Relatively few reports of
damaging convective winds occurred in the autumn and winter. 

Magnitude (Wind Gust Speed) 

Exact measurement of convective wind gusts are limited by the number of wind recording
instruments in the CWA. Most severe wind events are determined by the amount of structural and/or
tree damage that coincide with the wind event. When exact wind speeds were recorded, by far the 
majority fell in the 50-60 knot range (58-69 mph) (Fig. 14). Of the 107 total measured events, 93
wind gusts (or 87%) fell within this range. There were few reports of wind gusts in excess of 60 
knots (69 mph). The highest recorded convective wind gust was 76 knots (87 mph) which on April
23, 1999 at Cape Henry, VA. 

4. Overview 

Seasonal and diurnal maxima of severe local storms occur during the spring and early summer 
months in the WFO Wakefield CWA. Typically during this time of year, a deep south to southwest 
flow of air ahead of transitory mid-latitude troughs, brings in moisture from the Gulf of Mexico and 
western Atlantic Ocean into the Middle Atlantic region. Also during the spring and early summer 
seasons, cold fronts at the surface penetrate the region and provide a lifting focus mechanism to help
generate convection. Increased solar insolation during this time of year produces greater instability
of the atmosphere. Also, warm fronts lifting north through the Middle Atlantic region can provide
both a lifting mechanism and vertical wind shear to help initiate and maintain convective storms. 
Therefore, the key ingredients needed to initiate and maintain convection (moisture, lift, instability,
and wind shear) are maximized during the spring and early summer months. 

5. Conclusion 

In the WFO Wakefield, VA CWA, severe convective storms can occur at any time of year and
anytime of the day, but are most common during the spring and summer months during the mid 
afternoon to early evening time frame. Severe hailstorms are more common in the spring months,
while summer severe storms are more likely to result in convective wind gusts. Hail is more 
common during the early spring due to the natural evolution of thunderstorm cells from the 
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formative or initial stages in which updrafts are dominant. This is in contrast to the mature or 
decaying stages of thunderstorms in which downdrafts are more dominant later in the spring.
Downdrafts are more directly related to convective wind gusts (downbursts). 

Forecasters at WFO Wakefield should use this paper as a baseline in severe storm warning decision 
making. It can serve as a climatological reference point for spatial and temporal distribution of
severe weather types, and as an aid to forecaster’s situational awareness and expectations of severe
weather threats. 
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Figures 

Figure 1. WFO Wakefield, VA County Warning Area (CWA) shaded in 
yellow. 
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Figure 2. Monthly tornado distribution for WFO Wakefield, VA CWA for the period 
1950 to 1995. 
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Figure 3. Hourly tornado distribution for WFO Wakefield, VA CWA for the period 
1950 to 1995. 
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Figure 4. Tornado intensity distribution for Wakefield, VA CWA for the period 1950 to 
1995. 
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Figure 5. Historical tornado tracks for the period 1950 to 1995. The black 
line encompasses the Wakefield, VA CWA. 
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Figure 6. Hourly distribution of strong versus weak tornados distribution for WFO 
Wakefield, VA CWA for the period 1950 to 1995. 
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Figure 7. Monthly hail distribution for WFO Wakefield, VA CWA for the period 1996 to 
2000. 
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Figure 8. Hourly hail distribution for WFO Wakefield, VA CWA for the period 
1996 to 2000. 
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Figure 9. Seasonal hail variation for WFO Wakefield, VA CWA for the period 1996 to 2000. 
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Figure 10. Hail size distribution in the Wakefield, VA CWA for the period 1996 to 2000. 
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Figure 11. Monthly distribution of convective damaging wind events for WFO Wakefield, 
VA CWA for the period. 
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Figure 12.  Diurnal wind distribution for WFO Wakefield, VA CWA for the period 1996 
to 2000. 
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Figure 13.  Seasonal wind distribution for WFO Wakefield, VA CWA for the period 1996 
to 2000. 

N
um

be
r o

f E
ve

nt
s 

N
um

be
r o

f E
ve

nt
s 

12 



100 

80 

60 

40 

20 

0 
50-60 >60-70 >70 

Wind Speed (kts) 

Figure 14.  Wind intensity distribution for WFO Wakefield, VA CWA for the period 
1996 to 2000. 

Table 1. Fujita Scale. (Fujita, T.T., 1981) 

Fujita Scale Wind Speed Tornado 
(mph) Character 

F0 47-73 Weak 
F1 74-110 Weak 
F2 111-150 Moderate 
F3 151-199 Strong 
F4 200-255 Intense 
F5 >255 Devastating 
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