Science Behind the National Blend of Models Temperature Elements

Bruce Veenhuis NWS/OSTI/MDL 04/15/2015 MDL Collaborators: Tabitha Huntemann David Rudack Daniel Plumb Dana Strom Geoff Wagner Christina Finan John L. Wagner

National Blend of Models (NBM) Project Goals & Requirements

- Objective
 - Improve quality and consistency of the NWS National Digital Forecast Database (NDFD)
- Project Goals
 - Through an integrated and structured approach
 - Develop a set of foundational gridded guidance products for the NDFD weather elements based on NWS and non-NWS model information
 - Create a methodology for a national blend ("best") from multiple models, beginning with the Day 3-8 time frame and extensible to a full set of deterministic and probabilistic products covering days 1-10
 - Project Requirements:
 - NWS Enterprise Solution
 - Nationally uniform product with spatial and temporal consistency
 - Extensible methodologies (models, elements, lead times...)
 - Meet R2O criteria
 - Implementable and Sustainable
 - No degradation of service

Slide courtesy: Kathryn Gilbert & David Myrick An Introduction to the National Blend of Global Models Project VLab Forum – Feb. 18, 2015

2

Comparison of Blends

MDL Blend	WPC Blend	CR Super Blend
Statistically derived weights based on recent verification	Expert weights determined by verification. Forecasters may adjust weights.	Expert weights determined by verification.

Overview

- Explanation of current Blend prototype
- Scientific reasoning for current configuration
- Verification Results

Part 1: Overview

- The National Blend of Models (NBM) combines forecasts from numerical weather prediction models to produce bias-corrected and statistically downscaled guidance on the 2.5 km NDFD grid
- Here we outline the methodology for 2-m temperature, 2-m dewpoint, daytime maximum temperature and nighttime minimum temperature
- Each input is bias-corrected relative to a common highresolution analysis
- The bias-corrected components are blended using a MAE-based weighting technique

Blend: 09 April 2015, 24-hr 2-m Temperature Forecast

Part 1: Bias-Correction

 Track the bias of each model using an Exponentially Weighted Moving Average (EWMA; Roberts 1959 also called "decaying average" Cui et al. 2012)

$$B_{t} = (1 - \alpha)B_{t-1} + \alpha(FCST_{t-1} - OBS_{t-1})$$

B = Bias α = "Decaying Weight" OBS = Observation FCST = Forecast

- Bias-correction is performed separately for each grid point, projection, and element
- Used to create bias-corrected forecast grids

$$BCFCST_t = FCST_t - B_t$$

Part 1: MAE-based Weighting

 Track the MAE of each bias-corrected component using an EWMA

 $MAE_t = (1 - \alpha)MAE_{t-1} + \alpha |BCFCST_{t-1} - OBS_{t-1}|$

 $MAE = Mean Absolute Error BCFCST = Bias-corrected Forecast \alpha = "Decaying Weight" OBS = Observation$

 Separate MAE estimates for each grid point, projection, and element

 MAE-based weighting scheme (Woodcock and Engel, 2005)

$$w_m = a_m^{-1} \left(\sum_{k=1}^K a_k^{-1} \right)^{-1}$$

 Where w_m is the weight for member m, a_m is the most recent MAE_t for member m, and K is the total number of models being blended

$$w_m = a_m^{-1} \left(\sum_{k=1}^K a_k^{-1} \right)^{-1}$$

Example with 3 models:
$$W_m = a_m^{-1} \left(\sum_{k=1}^{K} a_k^{-1} \right)^{-1}$$

MAE₁=2
MAE₂=3
MAE₃=4
Weight for model 1...
 $W_1 = \frac{\left(\frac{1}{MAE_1}\right)}{\frac{1}{MAE_1} + \frac{1}{MAE_2} + \frac{1}{MAE_3}}$

Example with 3 models:
$$w_m = a_m^{-1} \left(\sum_{k=1}^{K} a_k^{-1} \right)^{-1}$$

MAE₁=2
MAE₂=3
MAE₃=4
Weight for model 1...
 $w_1 = \frac{\left(\frac{1}{MAE_1}\right)}{\frac{1}{MAE_1} + \frac{1}{MAE_2} + \frac{1}{MAE_3}}$
 $w_1 = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{3} + \frac{1}{4}} = 0.46$

Example with 3 models:
$$w_m = a_m^{-1} \left(\sum_{k=1}^{K} a_k^{-1} \right)^{-1}$$

MAE₁=2
MAE₂=3
MAE₃=4
Weight for model 1...
 $w_1 = \frac{\left(\frac{1}{MAE_1}\right)}{\frac{1}{MAE_1} + \frac{1}{MAE_2} + \frac{1}{MAE_3}}$
 $w_1 = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{3} + \frac{1}{4}} = 0.46$

Repeat for remaining two models...

 Where w_m is the weight for member m, BCFCST_m is the bias-corrected forecast for member m, and M is the total number of models being blended

Blend: 09 April 2015, 36-hr 2-m Temperature Forecast

- Pros: Simple computations, straightforward to implement, reasonable results, easy to handle missing model forecasts
- Cons: Does not adjust for error correlation among models

Part 2: Reasoning Behind Blend

Part 2: Reasoning Behind Blend

- Provide justification for Blend configuration backed by verification results
- Before implementing the prototype we tested various weighting techniques using a stationbased dataset
 - Direct model output (DMO) 2-m temperature from ECMWF Deterministic, GFS, GEFS, CMCE, and NAM (projections < 84-hrs)
 - DMO interpolated to stations and bias-corrected relative to the station-based observations using an EWMA
 - Results for 1 Oct. 2008 30 Sept. 2012

Part 2: 335 Stations

Part 2: Candidate Techniques

- Equal Weights
- MAE and RMSE-based weights

 Woodcock and Engel (2005)
- Ridge Regression
 - Peña and van den Dool (2008)
- Bayesian Model Averaging (BMA)
 Raftery et al. (2005), Veenhuis (2014)

Increasing Complexity

2-m Temperature MAE, 335 Stations, 1 Oct. 2008 - 30 Sept. 2012 3.5 2.5 MAE [C] -BC EQ MEAN 1.5 0.5 **Projection** [h]

2-m Temperature MAE, 335 Stations, 1 Oct. 2008 - 30 Sept. 2012 4 3.5 3 2.5 MAE [C] 2 -BC EQ MEAN 1.5 -----MAE WGT 1 0.5 0 24 0 48 72 96 120 144 168 192 **Projection** [h]

2-m Temperature MAE, 335 Stations, 1 Oct. 2008 - 30 Sept. 2012

2-m Temperature MAE, 335 Stations, 1 Oct. 2008 - 30 Sept. 2012

2-m Temperature MAE, 335 Stations, 1 Oct. 2008 - 30 Sept. 2012

Part 2: Summary

- MAE-weighted Blend performed well for 2-m temperature
- Increasing complexity yielded diminishing returns
- MAE-based weighting scheme is robust and easiest to implement operationally
- Can set a competitive benchmark for future improvements

Part 3: Blend Verification

Part 3: Blend Verification

- Verification results for the Blend prototype
- Gridded Verification Relative to RTMA

 Courtesy of the NBM Verification Team (Tabitha Huntemann)
- Point Verification (Blend vs. ECMWF GMOS)
 Courtesy of David Rudack
- Examples of MAE-based weights at specific points

Part 3: February 2015 2-m Temperature

Surface Temperature 00Z MAE: NDFD, GMOS, Blend, and DNG vs RTMA; OVERALL, 201502

Part 3: February 2015 2-m Dewpoint

Dew Point 00Z MAE: NDFD, GMOS, Blend, DNG, and WPC vs RTMA; OVERALL, 201502

Part 3: Blend vs. ECMWF GMOS

- Is the Blend more skillful than the single best component?
- Interpolated Blend forecast grids to stations and verified relative to station-based observations
- Compared with bias-corrected ECMWF GMOS grids interpolated to stations
- 2-m Temperature
- 1 Jan. 2015 26 March 2015

2-m Temperature MAE, 300 Stations, 1 Jan. 2015 - 26 Mar. 2015

Part 3: Example Weights 2-m Temperature

120-hr Forecast: Atlanta, GA

Part 3: Example Weights 2-m Temperature

120-hr Forecast: Albuquerque, NM

Part 3: Example Weights 2-m Temperature

120-hr Forecast: Seattle, WA

Summary

- Prototype Blend is created by weighting the bias-corrected components using an MAEbased weighting scheme
- MAE-weighted Blend is more skillful than the equally-weighted Blend
- Plan to use technique outlined here for 2-m temperature, 2-m dewpoint, daytime maximum temperature and nighttime minimum temperature

Future Work

- National Blend of Models (NBM) prototype temperature and dewpoint grids are being produced on the development WCOSS platform
- Daytime Maximum and Nighttime minimum grids will be added soon.
- Blend Version 1 scheduled for operational implementation in December 2015
 - CONUS Domain
 - 2-m Temp, Dew, Max T, Min T, AppT, RH,
 POP 12, sky cover, wind speed and direction

References

- Cui, B., Z. Toth, Y. Zhu, and D. Hou, 2012: Bias Correction for Global Ensemble Forecast. *Wea. Forecasting*, **27**, 396–410.
- Peña, M., and H.M. van den Dool, 2008: Consolidation of Multimodel Forecasts by Ridge Regression: Application to Pacific Sea Surface Temperature. J. Climate, 21, 6521–6538.
- Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. *Mon. Wea. Rev.*, 133, 1155–1174.
- Roberts, S. V., 1959: Control chart tests based on geometric moving averages. *Technometrics*, **1**,239-250.
- Veenhuis, B. A., 2014: A practical model blending technique based on Bayesian model averaging. *Preprints, 22st Conference on Probability and Statistics in the Atmospheric Sciences,* Atlanta, Amer. Meteor. Soc.
- Woodcock, F., and C. Engel, 2005: Operational consensus forecasts. *Wea. Forecasting*, **20**, 101–111.